耐磨陶瓷涂層由于兼有優(yōu)異的機(jī)械耐磨性能和良好的抗腐蝕性能,已成功地應(yīng)用于靜態(tài)、動(dòng)態(tài)和惡劣的環(huán)境中,起到了對基體的保護(hù)作用,提高了構(gòu)件的效率和使用壽命,其應(yīng)用越來越廣。金屬粉末一個(gè)最典型的例子就是切削刀具,傳統(tǒng)的硬質(zhì)合金刀具雖然強(qiáng)度較高,但硬度較小;陶瓷刀具硬度較高,但強(qiáng)度稍差。金屬粉末價(jià)格隨著生產(chǎn)的發(fā)展和技術(shù)的進(jìn)步,高硬高強(qiáng)鋼用于制造各種機(jī)械設(shè)備基礎(chǔ)零部件越來越普遍,普通刀具和單一材料刀具難以滿足高速切削等極端條件下的要求,必須依靠復(fù)合材料來實(shí)現(xiàn)這一目標(biāo),解決問題的重要途徑之一是在刀具上沉積高硬耐磨涂層。
氮碳化鈦涂層有優(yōu)良的力學(xué)及摩擦學(xué)性能,作為硬質(zhì)耐磨涂層,它已廣泛用于切削刀具、鉆頭和模具等場合,具有廣泛的應(yīng)用前景。金屬粉末研究表明,氮碳化鈦涂層的結(jié)構(gòu)、性能和結(jié)合強(qiáng)度受化學(xué)組分及工藝參數(shù)等因素的影響。金屬粉末價(jià)格從影響氮碳化鈦涂層結(jié)構(gòu)、性能、殘余應(yīng)力和結(jié)合強(qiáng)度的因素出發(fā),綜述了90年代以來的研究成果,為合理地利用和進(jìn)一步改善氮碳化鈦涂層的性能提供參考,提出了進(jìn)一步的工作。
針對C、O反應(yīng)和液相存在溫度,制定加壓燒結(jié)工藝制度,形成金屬陶瓷材料全致密化的低壓燒結(jié)技術(shù)。金屬粉末研究金屬陶瓷材料的物相及其組成,特別是黑相粒度與材料韌性關(guān)系,形成了金屬陶瓷材料的組織增韌方法。常德金屬粉末價(jià)格系統(tǒng)研究各種成分金屬陶瓷材料原料、制粒方法、燒結(jié)制度、線膨脹系數(shù)、壓制壓力、壓坯密度和產(chǎn)品尺寸及形狀的關(guān)系,建立了金屬陶瓷產(chǎn)品燒結(jié)成型數(shù)據(jù)庫,用于指導(dǎo)金屬陶瓷材料制品制備。
碳化鉻可作為硬質(zhì)合金的添加劑(如碳化鎢基硬質(zhì)合金晶粒細(xì)化劑),從而應(yīng)用于礦山、機(jī)械加工等方面。金屬粉末碳化鉻可作為焊接材料添加劑,用它制成的焊條Chemicalbook、堆焊在某些機(jī)械設(shè)備的工作面上(如磨煤機(jī)、球磨機(jī)、鄂板等),可將使用壽命提高幾倍以上。金屬粉末價(jià)格碳化鉻可大量用作金屬表面保護(hù)工藝的熱噴涂材料。
制備生長氮化鋁單晶所用碳化鉭坩堝,包括:高純碳化鉭粉、粘結(jié)劑、包套模具、液體壓力介質(zhì)、密閉高壓容器、坩堝、車床及高溫加熱爐。金屬粉末將高純碳化鉭粉與粘結(jié)劑混合均勻后烘干,裝入包套模具材料中;再裝入倒?jié)M液體壓力介質(zhì)的密閉高壓容器中進(jìn)行高壓壓制成碳化鉭坩堝模型;放入坩堝內(nèi),再放在高溫加熱爐里進(jìn)行高溫?zé)Y(jié);利用車床對其進(jìn)行車削加工,得到合適大小的碳化鉭坩堝;再經(jīng)過高溫加熱爐高溫定型,得到生長氮化鋁單晶所用的碳化鉭坩堝。專業(yè)金屬粉末本發(fā)明能夠延長碳化鉭坩堝使用壽命,提升其生長氮化鋁單晶的晶體質(zhì)量,增加單晶可用面積;且方法簡單,可實(shí)現(xiàn)低成本氮化鋁單晶的制備。