TiCN膜層具有較低的內(nèi)應力,比較高的韌性,具有良好的潤滑性,以及高硬度、耐磨損等特性,適用于要求較低的摩擦系數(shù)又要求較高硬度的場合。金屬陶瓷材料由于TiCN具有比TiN更低的摩擦系數(shù)和更高的硬度 , 鍍以氮碳化鈦的工具更加適合于切割如不銹鋼 , 鈦合金和鎳合金等堅硬材料,比TiN更具耐磨性和高溫穩(wěn)定性。金屬陶瓷材料生產(chǎn)廠家將TiCN設(shè)置為涂層刀具的主耐磨層,可顯著提高刀具的壽命。TiCN膜層適用于需要高速切削、高進給且切削和成型刃口處常受沖擊的切割、成型、沖剪工具,但需要注意被鍍材的材質(zhì)及表面狀況,如TiCN并不適用于高溫場合 , 如不銹鋼的干切割。
碳化鉭在硬質(zhì)合金中發(fā)揮了重要作用,它通過改善纖維組織和相變動力學而提高合金性能,使合金具有更高的強度,相穩(wěn)定性和加工變形能力。金屬陶瓷材料碳化鉭的熔點非常高(4000℃),熱力學穩(wěn)定性好(熔點時△Gf=-154kj/mol)。專業(yè)金屬陶瓷材料鉭能夠特別有效地促進成核作用,防止凝固后期形成的核晶脆性薄膜中析出碳[i]。其作用主要為:(1)阻止硬質(zhì)合金晶粒的長大;(2)與TiC一起形成WC和Co之外的第三彌散相,從而顯著增加硬質(zhì)合金抗熱沖擊、抗月牙洼磨損及抗氧化的能力,并提高其紅硬性。
在含碳化鈦(TiG)的硬質(zhì)合金中加入一定量的碳化鉭(TaC),不僅能提高常溫時的強度(每增加4~6%的TiC含量,可增加強度12~18%)。專業(yè)金屬陶瓷材料生產(chǎn)廠家更重要的是能提高硬質(zhì)合金在1200℃時的抗彎強度,提高刀具和工件材料發(fā)生粘結(jié)的溫度,降低切削過程中硬質(zhì)合金碳元素向工件材料(鋼)擴散的深度,從而降低刀具的擴散磨損,提高刀具耐用度。此外,含TaC的硬質(zhì)合金的可焊性好,刃磨時不易產(chǎn)生裂紋,提高了硬質(zhì)合金的使用性能。金屬陶瓷材料銑削用硬質(zhì)合金刀片應含有較多的碳化鉭,使刀尖強度高,對斷續(xù)切削時的沖擊和溫度變化有較好的適應性。
在配方中引入AlN納米線,使Ti(C,N)基金屬陶瓷在燒結(jié)過程中形成一種高溫下穩(wěn)定的化合物(TiAIN)。金屬陶瓷材料其具有有效隔絕硬質(zhì)相中Ti、N、C原子向外擴散的作用,從而有效抑制Ti、N、C原子在粘接相中溶解和析出。專業(yè)金屬陶瓷材料生產(chǎn)廠家生產(chǎn)廠家降低了氮碳化鈦在粘接相中的溶解度,減少氮碳化鈦在粘接相中溶解析出再長大導致的N分解,增強氮碳化鈦的穩(wěn)定性,使氮碳化鈦晶粒得到細化,提高Ti(C,N)基金屬陶瓷的硬度、抗彎強度和斷裂韌性。
它是一種在高溫環(huán)境下具有良好的耐磨、耐腐蝕、抗氧化的高熔點的材料,與鎳鉻合金制得的硬質(zhì)合金顆粒,采用等離子噴涂法,可作為耐高溫、耐磨、耐氧化與耐酸涂層,廣泛用在飛機發(fā)動機和石油化工機械器件上,可大大提高機械的壽命。金屬陶瓷材料也常用作硬質(zhì)合金的晶粒細化劑及其他耐磨、耐腐蝕元件。以Cr3C2為基的金屬陶瓷在高溫下有極優(yōu)異的抗氧化性能。用于碳化鉻陶瓷。粗粒碳化鉻作為熔噴材料在金屬及陶瓷表面形成熔噴覆膜,賦予后者以耐磨、耐熱、耐蝕等性能,廣泛用于飛機發(fā)動機及石油化工機械器件上,以大大提高機械壽命。專業(yè)金屬陶瓷材料生產(chǎn)廠家亦用于噴制半導體膜。
金屬陶瓷刀具材料具有高硬度、高強度、優(yōu)良的高溫和耐磨性能、良好的韌性、密度小、紅硬性高、高溫抗氧化性好等一系列優(yōu)點。金屬陶瓷材料滿足汽車、摩托車制造業(yè)、模具加工業(yè)、軸承加工業(yè)、航空航天業(yè)、機床業(yè)、工程機械、石墨電極、3C電子行業(yè)配套等行業(yè)市場的需求,并能打破國外企業(yè)的市場壟斷地位。專業(yè)金屬陶瓷材料同時,以Ti(C,N)替代戰(zhàn)略稀缺資源鈷、鎢類材料,也有利于國家的戰(zhàn)略安全和資源儲備。