相比于現(xiàn)有單純采用機(jī)械混合的方法添加WC、Mo2C,實(shí)驗(yàn)組通過(guò)物理包覆的方式實(shí)現(xiàn)了在Ti(C,N)顆粒的表面覆蓋一層WC、Mo2C,因此,在燒結(jié)過(guò)程中,Ti(C,N)與WC、Mo2C的界面形成較完整的(Ti,W,Mo)(C,N)環(huán)形化合物,(Ti,W,Mo)(C,N)在粘接相金屬中溶解占位從而阻礙Ti(C,N)中的Ti、N、C原子的擴(kuò)散,有效抑制Ti、N、C原子在粘接相中的溶解和析出。哪有氮碳化鈦降低了氮碳化鈦在粘接相中的溶解度,減少氮碳化鈦在粘接相中溶解析出再長(zhǎng)大導(dǎo)致的N分解。氮碳化鈦增強(qiáng)氮碳化鈦的穩(wěn)定性,使氮碳化鈦晶粒細(xì)化,提高金屬陶瓷的硬度和強(qiáng)韌性。
耐磨陶瓷涂層由于兼有優(yōu)異的機(jī)械耐磨性能和良好的抗腐蝕性能,已成功地應(yīng)用于靜態(tài)、動(dòng)態(tài)和惡劣的環(huán)境中,起到了對(duì)基體的保護(hù)作用,提高了構(gòu)件的效率和使用壽命,其應(yīng)用越來(lái)越廣。氮碳化鈦一個(gè)最典型的例子就是切削刀具,傳統(tǒng)的硬質(zhì)合金刀具雖然強(qiáng)度較高,但硬度較小;陶瓷刀具硬度較高,但強(qiáng)度稍差。氮碳化鈦價(jià)格隨著生產(chǎn)的發(fā)展和技術(shù)的進(jìn)步,高硬高強(qiáng)鋼用于制造各種機(jī)械設(shè)備基礎(chǔ)零部件越來(lái)越普遍,普通刀具和單一材料刀具難以滿足高速切削等極端條件下的要求,必須依靠復(fù)合材料來(lái)實(shí)現(xiàn)這一目標(biāo),解決問(wèn)題的重要途徑之一是在刀具上沉積高硬耐磨涂層。
碳化鉻是一種在高溫環(huán)境下(1000~1100℃)具有良好的耐磨、耐腐蝕、抗氧化性的高熔點(diǎn)的無(wú)機(jī)材料,Chemicalbook屬于一種金屬陶瓷。哪有氮碳化鈦因其特殊的高溫性能,被大量用作金屬表面保護(hù)工藝的熱噴涂材料和硬質(zhì)合金行業(yè)的添加劑。氮碳化鈦是一種灰色粉末,有金屬光澤;斜方晶系;密度:6.68g/cm3;熔點(diǎn):1890℃;在高溫環(huán)境下(1000~1100℃)具有良好的耐磨、耐腐蝕、抗氧化性能。屬于一種金屬陶瓷。
粉末粒度及其分布的測(cè)定方法很多,一般用篩分析法(>44μm)、沉降分析法(0.5~100μm)、氣體透過(guò)法、顯微鏡法等。超細(xì)粉末(<0.5μm)用電子顯微鏡和 X射線小角度散射法測(cè)定。氮碳化鈦金屬粉末習(xí)慣上分為粗粉、中等粉、細(xì)粉、微細(xì)粉和超細(xì)粉五個(gè)等級(jí)。通常按轉(zhuǎn)變的作用原理分為機(jī)械法和物理化學(xué)法兩類(lèi),既可從固、液、氣態(tài)金屬直接細(xì)化獲得,又可從其不同狀態(tài)下的金屬化合物經(jīng)還原、熱解、電解而轉(zhuǎn)變制取。難熔金屬的碳化物、氮化物、硼化物、硅化物一般可直接用化合或還原-化合方法制取。氮碳化鈦價(jià)格因制取方法不同,同一種粉末的形狀、結(jié)構(gòu)和粒度等特性常常差別很大。
碳化物納米材料在金屬涂層,工具,機(jī)器零部件以及復(fù)合材料等相關(guān)領(lǐng)域展現(xiàn)出了巨大的應(yīng)用潛力。氮碳化鈦在所有的碳化物納米線材料中,碳化銀是最受歡迎的材料之一,也是潛力最大的材料之一。碳化鉭不但繼承了碳化物納米材料諸多優(yōu)點(diǎn),還具有其自身的獨(dú)特一面。氮碳化鈦價(jià)格如硬度高(常溫下莫氏硬度為9-10、熔點(diǎn)高(大約為3880℃)、楊氏模量高(283-550GPa)、導(dǎo)電性強(qiáng)(電導(dǎo)率25℃時(shí)為32.7-117.4μΩ·cm)、高溫超導(dǎo)(10.5K)、抗化學(xué)腐燭及熱震能力強(qiáng)、對(duì)氨分解及氫氣分離有很高的催化活性。